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Motivated by the challenges of uncertainty quantification (UQ) for coarse-grained (CG) molecular
dynamics (MD), we investigate the role of perturbation theory in model reduction of classical sys-
tems. In particular, we consider the task of coarse-graining rigid-bodies in the context of generalized
multipole potentials that have controllable levels of accuracy relative to their atomistic counterparts.
We show how the multipole framework yields a hierarchy of models that systematically connects
a CG “point-molecule” approximation to the exact dynamics. We use these results to understand
when and how the CG models fail to describe atomistic dynamics at the trajectory level and de-
velop asymptotic error estimates for approximate molecular potential energies. Implications for
other model-reduction strageties are also discussed. Key findings of this work are that: (i) omitting
rotational energy introduces significant error when coarse-graining; and (ii) attention to symmetry
can improve accuracy of “point-molecule” approximations. Analytical derivations and numerical
results support these conclusions. Relevance to non-rigid bodies is also discussed.

I. INTRODUCTION

Over the past decade, several “bottom-up” approaches
to coarse-graining have been proposed as a way to over-
come the time- and length-scale limitations of molecular
dynamics (MD) [1–15]. However, many of these methods
require calibration of the coarse-grained (CG) potentials
via costly atomistic simulations. Moreover, the result-
ing models are known to suffer from representability and
transferability problems in which (i) the definitions of CG
observables differ from their atomistic counterparts, and
(ii) observables and/or force-fields have non-trivial state-
dependence [16–22]. Such problems have made it impos-
sible to construct a priori uncertainty estimates for CG
predictions because the accuracy (and thus usefulness)
of every model must be determined individually at each
state-point as part of the calibration. Given that this
exercise renders the model-reduction process as expen-
sive as the computations it is meant to replace, coarse-
graining has remained a limited tool for materials science.

Fundamentally, the aforementioned issues can be
traced to the fact that traditional bottom-up CG meth-
ods remove degrees-of-freedom (DOF) in an ad hoc man-
ner.1 In such cases, the CG representation cannot be
linked to its atomistic counterpart through a systematic
theory controlling the accuracy of the approximation. As
a result, important physical processes are eliminated in a
way that (i) is inconsistent with the definition of physi-
cal observables, and (ii) can only be quantified (and cor-
rected) through comparison with all-atom simulations.
Motivated in part by cluster-expansions, this “missing

1 While the coordinate reduction is ad hoc, the task of computing
the CG force-field is often done systematically via approaches
based on structure-matching, force-matching, and/or relative en-
tropy arguments. See Refs. [1–15].

physics” has often been attributed to many-body inter-
actions, and several works have explored the impact of
including such effects in CG models [23–25]. Nonetheless,
we feel that a deeper analytical understanding of how
to link atomistic and CG systems through perturbation
theory is necessary for enabling more useful uncertainty
quantification (UQ).

As a first step in addressing this problem, we consider
a new, generalized multipole strategy applied to force-
fields of rigid bodies. We take advantage of the well-
known fact that the kinetics of any such particle can be
defined entirely in terms of its center-of-mass and orien-
tation, χ and a rotation matrix Θ respectively. Criti-
cally, we extend this observation to dynamics by show-
ing that the interaction potential between molecules j
and j′ is also exactly expressed in terms of these coordi-
nates, Uj,j′ = U(χj ,Θj ,χj′ ,Θj′). Furthermore, under
the assumption that the (constant) interatomic spacings
are small relative to the characteristic distance between
molecules, the expression for U involves small parame-
ters. Recasting U in terms of a power series then yields
a hierarchy of models having controllable accuracy based
on truncation order. Importantly, we demonstrate that
this hierarchy connects a “point-molecule” CG represen-
tation (i.e. in terms of only χ) to its atomistic counter-
part [26].2

A key objective of this work is to provide an alternate
interpretation of bottom-up coarse-graining as a task in

2 For clarity, we distinguish the concepts of reduced-order model-
ing and coarse-graining. We treat the former as the more general
task of decreasing complexity of a model. In our case, it refers
to the fact that Uj,j′ is approximated to finite (i.e. reduced) or-
der. By coarse-graining, we mean the specific task of eliminating
degrees of freedom. We acknowledge, however, that the phrase
“coarse-graining in interaction space” has also been used to de-
scribe the task of approximating interaction potentials, although
we avoid such conventions here.
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coordinate decoupling, as opposed to coordinate reduc-
tion. In many contexts, it has been tempting to adopt
the latter perspective, since computational efficiency is
gained by considering fewer DOF. But, as we show, the
benefits may be greater if the reduced DOF are not ac-
tually eliminated, but rather decoupled in such a way
that they can be modeled analytically. This approach
addresses the fundamental motivation for computational
approaches (i.e. intractable equations of motion) while
preserving more of the all-atom physics. Moreover, it fa-
cilitates the development of analytical tools to connect
atomistic and CG representations in a way that reveals
missing physical processes in the latter. For example,
we invoke this perspective to show how omission of rota-
tional energy contributes to errors in our CG models and
suggest “zeroth-order” corrections that might improve
CG predictions. More generally, our method falls un-
der the category of coarse-graining in interaction space,
and we refer the reader to Ref. [26] for connections to
other techniques that adopt similar perspectives.

Despite these benefits, our approach has inherent lim-
itations. For one, multipole expansions converge under
far-field conditions, i.e. when the characteristic molecular
size is small relative to the intermolecular separation. In
dense systems this condition may be occasionally, and dy-
namically, violated. Thus, simulation of dense molecular
systems would require reversion to the all-atom interac-
tion for any pair of molecules that are “too close”. More-
over, only the limiting case of a point-molecule entails ac-
tually reducing degrees of freedom by decoupling Θ and
its associated angular momenta from linear translational
motion. However, a key benefit of our approach is that
uncertainties associated with these approximations can
be established analytically in certain cases, which facili-
tates assessing the quality of a model without expensive
atomistic simulations. We show, for example, how the in-
terplay between symmetry and uncertainty can be lever-
aged a priori to render point-molecule approximations
accurate at the trajectory level.

It is also important to note that our exposition focuses
primarily on uncertainties related to the intermolecular
potential energy and the corresponding effects on conver-
gence of coarse-grained trajectories. While predicting the
thermodynamic properties of many-body systems is of-
ten the primary goal of CG modeling, such quantities are
nonetheless extracted from dynamics. Thus, we believe
that our initial attempts to understand the limitations of
coarse-graining should focus on properties that are actu-
ally computed by the simulations. Moreover, such con-
siderations may become important as modelers attempt
to extract material properties from non-equilibrium sim-
ulations, e.g. diffusion coefficients from velocity autocor-
relation functions [27]. We leave consideration of UQ
for many-body systems for future work. Finally, this
manuscript does not address issues related to the broader
concept of UQ, i.e. the process of assessing and building
confidence in a simulation. This task involves many addi-
tional tasks beyond our scope, such as validation against

experiments and determining the quality and usefulness
of data. See Refs. [28–35] and the references therein for
more information.

A key difficulty of this work is the (to the best of
our knowledge) lack of readily-available software pack-
ages that can handle the generic class of force-fields we
consider. In particular, multipole-based evaluation of po-
tential, force, and torque fields involve contractions of
tensors of increasing order, which are not standard in
many MD codes. Moreover, discretization of the rigid-
body equations require care to preserve the symplectic
structure of the system. Indeed, development of com-
putational methods for such systems is an active area of
research in the community, with many papers being pub-
lished in the last few years [36–39]. To maintain strict
control over the approximations, we therefore develop
custom codes to perform all of our simulations. As these
have not been fully optimized, we do not make claims on
computational efficiency of our formalism. However, we
do discuss preliminary results suggesting decreased run-
times relative to full atom dynamics and discuss further
routes for improving efficiency. Detailed analysis of these
issues is beyond the scope of this work and is reserved for
a future manuscript.

We note that a comparable multipole strategy has been
developed for rigid “blobs,” i.e. in Ref. 40. Our approach
is distinct from this earlier work in several regards. First,
the authors of Ref. 40 viewed coarse-graining as a task
in “regrouping [rigid] blobs at a finer scale into coarser
blobs in the next level up.” Thus, the coordinates χ and
(their equivalent of) Θ do not represent intrinsic or “nat-
ural” CG variables of the system, but rather amount to
a modeling choice associated with a user-determined co-
ordinate reduction scheme. As a result, Θ does not play
the same role in their analysis as it does in ours [see, e.g.
our Eq. (3)]. Second, their focus was largely on statistical
properties of many-body simulations, whereas we primar-
ily deal with two-body simulations and trajectory-level
properties. Third, our main objective is to develop ana-
lytical methods for understanding when and how coarse-
graining is accurate or not. Thus our main emphasis is
on using generalized multipole approximations to under-
stand the assumptions inherent in coarse-graining.

The rest of this manuscript is organized as follows. Sec-
tion II reviews the formulation of rigid-body mechanics
and equations of motion expressed in terms of χ and
Θ. Section III derives the multipole approximations to
the potential, force, and torque. Section IV confirms the
analysis by comparison with numerical experiments. We
conclude with further discussion and open problems.

II. RIGID-BODY DYNAMICS

Our approach to rigid-body dynamics is adapted from
Leimkuhler et al. [41, 42]. Concerning notation, we in-
dex components of tensors with lowercase Greek letters,
while lowercase Roman letters index particles. Within
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tensor formulas we use the Einstein summation conven-
tion in which repeated indices are summed over all of
their admissible values.

A. Mathematical description of rigid bodies and its
connection to coarse-graining

It is useful to review the mathematical characterization
of rigid bodies. See also Refs. [41, 43] for related treat-
ments. We consider a molecule composed of P point-
particles indexed by k and having mass mk. By virtue of
the rigid-body constraints, the positions xk of these par-
ticles are fixed relative to one another, so that we may
write

xk = χ+ dk, (1)

where

χ = M−1
∑
k

mkxk (2)

is the center of mass, M =
∑
kmk is the total mass,

and dk is the position of the kth particle relative to a
coordinate system whose origin is χ. We further specify
that the axes of this coordinate system are parallel to a
fixed laboratory reference frame, so that the dk depend
on the orientation of the molecule.

We also define a body-frame coordinate system that
is fixed to the molecule. In this reference frame, the
positions δk of the atoms are constant. The two coordi-
nate systems are connected by a rotation matrix Θ such
that dk = Θδk, where we adopt the convention that all
vectors correspond to column vectors. We can therefore
express the position of all atoms in the molecule as

xk = χ+ Θδk. (3)

Note that the center-of-mass and rotation matrix can be
considered as the sole degrees of freedom for the rigid-
body molecule. Since the δk are constant, Eq. (3) de-
fines the atomic positions xk in terms of fewer variables.
The superficial reduction in degrees of freedom3 — from
{xk, k = 1, . . . , P} to {χ,Θ}— parallels coarse-graining
via the collapse of a molecule onto a point particle (with
orientation). This observation plays a central role in the
discussion that follows.

Finally, several tensors are helpful to express rigid-
body dynamics and compressed representations of inter-
molecular potentials. These tensors are defined as sums
over components of the atomic position vectors, δk. We
define them here, and reserve discussion of their use until
the next section.

3 For N atoms in a molecule, the number of degrees of freedom is
3N less the number of constraints. We have not actually reduced
the dimensionality of the system by expressing it in terms of χ
and Θ, since these coordinates implicitly encode the constraints.

Two mass-weighted second-order tensors are conve-
nient for expressing rigid body motion,

M =
∑
k

mkδkδ
T
k (4)

I =
∑
k

mk

[
(δTk δk)I− δkδTk

]
, (5)

where I is the identity tensor, and I is the moment of
inertia tensor. The notation δkδ

T
k denotes a dyadic (or

outer) product, so that we may identify M and I with
matrices. From equations (4) and (5) it is clear that M
and I are symmetric, and furthermore they commute.
Thus, the expressing them in terms of the principal axes
of rotation diagonalizes both. We use these axes to de-
fine the body-frame coordinate system. In this way the
origin and orientation of the molecular body-frame are
completely specified.4

In addition to the mass-weighted tensors M and I
needed for dynamics, we also consider geometric mo-
ments of the rigid bodies. These massless analogs of
Eqs. (4) and (5) are key for developing a generalized mul-
tipole theory for the intermolecular potential. We define

C =
∑
k

δk (6)

K(2) = K =
∑
k

δkδ
T
k . (7)

We will refer to C as the centroid. In tensor notation
these give rise to the natural nth-order generalization

Cα =
∑
k

δα,k (8)

K(2)
α,β = Kα,β =

∑
k

δα,kδβ,k (9)

K(n)
α,β,...,γ =

∑
k

δα,kδβ,k...δγ,k. (10)

Note that for molecules consisting of single atom-types,
i.e., mk ≡ m, then C = 0, and M = mK. However,
this is not true in general. Moreover, Eqs. (9) and (10)
are symmetric under interchange of any two indices, so

that the 3n elements of K(n) are highly redundant; see
also Ref. 40. While we do not pursue compressed repre-
sentations here, attention to such details are essential for
efficient use of multipole methods.

B. Kinetic and potential energies

For definiteness, we consider a system of N identical
rigid bodies indexed by j. Each body is composed of

4 Strictly speaking there are further degrees of freedom related to
axis order and/or subspace rotations in the case of degenerate
eigenvalues.
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P parts indexed by k and having mass mk. Given the
definitions of the previous section, one may show that
the kinetic energy of the jth molecule is [41]

Kj

(
χ̇j , Θ̇j

)
=

1

2
M χ̇2

j +
1

2
Tr
[
Θ̇jMΘ̇

T

j

]
,

where Tr is the trace operator. If u is the interaction
potential characterizing forces between the atomic sites
of the rigid body, the intermolecular potential with the
j′th rigid body is

Uj,j′
(
χj ,Θj ,χj′ ,Θj′

)
=
∑
k,k′

u
(
χj − χj′ + Θjδk −Θj′δk′

)
. (11)

Although we have assumed that all interaction sites have
identical interactions, it is straightforward to extend
Eq. (11) to more general cases, i.e. by indexing u with k
and k′.

Several comments are in order. By virtue of the fact
that the δk are constant, it is clear that the kinetic and
potential energies have been expressed solely in terms of
the molecular variables χj and Θj and their time deriva-
tives. Despite this reduction, there is no loss of fidelity
in that the individual atomic interactions are retained
through the P 2 terms that depend on the pairs δk, δk′ .
Thus, our reduced description in terms of molecular cen-
ters of mass and orientations is exactly equivalent to the
fully atomistic representation.

C. Equations of motion and their integration

The Hamiltonian formulation of rigid body motion is
a nontrivial subject with a long history. The issue of
suitable discretization strategies gives rise to additional
complexity. Rather than repeat these arguments here, we
summarize our implementation and refer to the literature
for details.

1. Comment on Cross-Products

In the theory of 3-dimensional rotations, cross-
products are often used to define angular momentum and
related concepts. However, matrix multiplication pro-
vides a suitable alternative for this operation, especially
given our characterization of orientation in terms of Θ.
Thus, it is useful to identify those transformations that
convert between matrix and vector representations of the
cross product. In particular, we define

skew(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (12)

rot(A) =

A3,2 −A2,3

A1,3 −A3,1

A2,1 −A1,2

 (13)

where ω is a 3-vector, and A a 3-by-3 matrix. The fol-
lowing cross-product identities follow directly from these
definitions

skew(ω)v = ω × v, (14)

rot(vωT) = ω × v (15)

These will be used repeatedly below.

2. Dynamics

In dynamical systems, rigid body constraints can be
implicitly enforced by simultaneously evolving the lin-
ear and rotational components of motion. The former
amounts to computing the usual forces acting on the cen-
ter of mass, while the latter entails computing the torque
field and the corresponding evolution of the inertia ten-
sor.

We begin by restricting attention to molecule j. The
potential due to all other molecules is given by

Uj =
∑
j′ 6=j

Uj,j′
(
χj ,Θj ,χj′ ,Θj′

)
, (16)

where each Uj,j′ contains summation over the atomic con-
stituents as in (11). For ease of notation we omit the
subscript j, keeping in mind that χ = χj and Θ = Θj .

The expressions for the force and torque on the j-th
molecule, are

F = −∇χU (17)

T =
∑
k

dk × Fk = −rot
(
∇ΘU ·ΘT

)
(18)

where the gradient with respect to the matrix variable Θ
is defined element-wise as(

∇ΘU
)
µ,ν

=
∂U

∂θµ,ν
(19)

The expression for the force acting on the center of mass
is standard. The torque computation may be less familiar
but, nevertheless, has been derived in several places see
[41, 44]. For completeness we include a derivation in the
appendix.

We recall the definitions of linear and angular momen-
tum with respect to the center-of-mass:

p = M χ̇ (20)

L =
∑
k

mkdk × ḋk. (21)

For the purpose of writing equations in the body frame
we define

π = ΘTL (22)

τ = ΘTT (23)
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Next, differentiation of the constraint that Θ is orthog-
onal (ΘΘT = I) reveals that the logarithmic derivative

ΘTΘ̇ is skew symmetric. Following convention we iden-
tify the angular velocity vector as

ΘTΘ̇ = skew(ω) (24)

Finally, the rigid-body dynamics in the body frame are{
ṗ = F
χ̇ = p/M

,

{
π̇ = τ + π×

(
I−1π

)
Θ̇ = Θ skew

(
I−1π

) (25)

Numerical integration of Eqs. (25) can be performed
via a variety of algorithms. Following convention of the
MD community we choose a splitting method analogous
to the Verlet class of algorithms, but developed for rigid
bodies; see Ref. 41 and 42 for details.

III. MULTIPOLE COARSE-GRAINING

We now have all of the formal ingredients necessary
to construct our hierarchy of reduced-order (RO) mod-
els (see footnote 2 for the distinction between CG and
RO models). The strategy is to approximate the inter-
molecular potential Eq. (11) using a generalized multi-
pole expansion. The result is a power series in the pa-
rameter |δk|/|χ|. In the next few sections, we first outline
these steps in the context of a common power-law exam-
ple, and then discuss the method more generally. Note,
the accuracy of this approximation depends on the or-
der of the expansion in combination with the separation
between molecular centers. We expect this approach to
be more effective when molecules interact through “far-
field” conditions. In the following we examine conver-
gence for few-body systems at a very fine scale of analy-
sis, for example, force as a function of position and tra-
jectories in the phase space of the full atomic system.
In future work we will extend these results to standard
ensembles, e.g. number-volume-temperature (NVT) and
number-pressure-temperature (NPT) ensembles.

A. Intermolecular potentials, forces, and torques

We begin by considering u = r−n for some n > 0,
which is a workhorse of many interatomic potentials (e.g.
electrostatic, van Der Waals, etc.). By Eq. (11) one finds
an intermolecular potential of the form

Uj,j′ =
∑
k,k′

1(
χ2 + 2χ ·∆k,k′ + ∆2

k,k′

)n/2 , (26)

χ = χj − χj′
∆k,k′ = Θjδk −Θj′δk′

where the “un-bold” symbols refer to magnitudes, i.e.
χ = |χ| and ∆k,k′ = |∆k,k′ |.

Using Eqs. (17) and (18), one may show that the cor-
responding intermolecular force and torque (in the labo-
ratory frame) are

F = n
∑
k,k′

χ+ ∆k,k′(
χ2 + 2χ ·∆k,k′ + ∆2

k,k′

)n/2+1
(27)

T = n
∑
k,k′

(Θjδk)× (χ+ ∆k,k′)(
χ2 + 2χ ·∆k,k′ + ∆2

k,k′

)n/2+1
(28)

Given these results, it is trivial to write the intermolecu-
lar equivalents of more complicated potentials that are
linear combinations of power laws. For example, the
atomistic Lennard-Jones potential of the form u(r) =
a/r12− b/r6 leads to RO forces and torques that are lin-
ear combinations of Eqs. (27) and (28). More generally,
we may view Eq. (11) and associated expressions for force
and torque, Eqs. (17) and (18) respectively, as reduced-
order operators that transform an atomistic potential into
its intermolecular counterpart. As such, one need only
compute the RO analogs of a set of atomistic basis po-
tentials, from which we can construct all mappings from
atomistic to RO potentials.

Note that the χ′s and Θ′s are the only dynami-
cal variables in equations (27) and (28) as the sets of
atomic coordinates {δk} and {δk′} are constant. For
well-separated small molecules, i.e. whenever

max
k,k′

{
|δk|
|χ|

,
|δk′ |
|χ|

}
� 1, (29)

we expect that the contributions from the summations
over atoms in Eqs. (26)–(28) can be approximated in
terms of low-order moments. Physically, the motivating
idea is that fine-scale molecular structure is not resolved
in the far-field of power-law interactions.

B. Multipole expansions

Define φ1 = 2χ̂ · ∆k,k′ (where χ̂ = χ/χ) and
φ2 = ∆2

k,k′ . Using the generalized binomial expansion,

Eq. (26) can be expressed as a series expansion of the
form

Uj,j′ =
∑
k,k′

1

χn

(
1 +

φ1
χ

+
φ2
χ2

)−n/2

=
P 2

χn
+

1

χn

∑
k,k′

∞∑
q=1

(−1)qΓ
(
n
2 + q

)
Γ
(
n
2

)
q!

(
φ1
χ

+
φ2
χ2

)q
(30)

where |φ1/χ+ φ2/χ
2| < 1 follows from assumption (29),

and Γ(x) is the gamma function.
Several comments are in order. Equation (30) may

be rearranged into a power series whose terms go as
χ−n−q for q > 0, the coefficients of which involve ex-

pressions of the form φp1φ
p′

2 . Interchanging the order of
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summation so that
∑
k,k′

∑
q →

∑
q

∑
k,k′ , it is clear that

terms
∑
k,k′ φ

p
1φ
p′

2 can be expressed as functions that map
χ̂, Θj and Θj′ to scalars. Critically, these functions can
be precomputed by summing over k, k′ in order to remove
explicit reference to the atomistic coordinates. In other
words, we can rewrite Eq. (30) as

Uj,j′ =
P 2

χn
+

1

χn

∞∑
q=1

Uq(χ̂,Θj ,Θj′ ,K(1), ...,K(q))

χq
(31)

where the Uq depend on geometric tensors up to order
q. As these tensors are precomputed and fixed for the
duration of any simulation, evaluation of Uq no longer
require summations over the atomic coordinates.

To see this last point in more detail, consider the first
term in the sum of order O(χ−n−1). One finds that

U1 = −n
2

∑
k,k′

φ1

= −nχ̂T
(
Θj

∑
k,k′

δk −Θj′

∑
k,k′

δk′
)

= −nP χ̂T(Θj −Θj′
)
C (32)

where C is the centroid as defined in Eq. (6). Likewise,
the second order term is given by

U2 =
∑
k,k′

−n
2
φ2 +

n

4

(n
2

+ 1
)
φ21

= −n
(
P Tr(K)− CTΘT

j Θj′C
)

+ n
(n

2
+ 1
)
χ̂T(PΘjKΘT

j + PΘj′KΘT
j′

− 2ΘjCCTΘT
j′
)
χ̂ . (33)

While more elaborate than U1, evaluation of U2 requires
only inner products against the geometric moments of the
rigid bodies in place of the P 2 computations in terms of
the interatomic distances.

In rounding out this section, we provide a few formulas
that complete the multipole description. In particular,
applying Eqs. (17) and (18) to the above expansion yields

F0 = n
P 2χ

χn+2
(34)

F1 =
(n+ 2)χ

χn+3
U1 +

nP

χn+2
[Θj −Θj′ ]C (35)

F2 =
(n+ 4)χ

χn+4
U2 +

2nχ

χn+4

[
P Tr(K)− CTΘT

j Θj′C
]

− n (n+ 2)

χn+4

[
PΘjKΘT

j + PΘj′KΘT
j′

− 2ΘjCCTΘT
j′

]
χ (36)

and

τ 0 = 0 (37)

τ1,α =
nP

χn+2
χTεαΘjC (38)

τ2,α =
−n
χn+2

CTΘT
j′εαΘjC

− n(n+ 2)

χn+4
χTεαΘj

[
PKΘT

j − CCTΘT
j′

]
χ (39)

where Fq and τ q are the contributions to the forces and
torques arising from Uq, and εα = [εα,β,γ ] is a matrix
formed from the β and γ components of the Levi-Civita
symbol εα,β,γ .

Finally, the methods discussed here can be generalized
to an arbitrary potential as the expansions in Eq. (31)
amount to the Taylor series. Thus, taking u(r) to be a
generalized potential that is sufficiently differentiable, we
may write

U = P 2u(χ) +
∑
q,k,k′

u(q)(χ)
(2χ ·∆k,k′ + ∆2

k,k′)
q

q!
, (40)

where u(q) denotes the qth derivative of u with respect
to χ. Applying the usual formulas to this series provides
the corresponding multipole expansions.

Note that the rotation matrix Θ does not appear in the
leading order term of Eq. (40). Thus, at large enough
distances the molecular structure and rotational DOF
are entirely decoupled from the center-of-mass motion.
Stated differently, truncating the multipole expansion at
leading order amounts to an approximation in which the
angular momentum of each molecule becomes a constant
of motion; see also Eq. (37). While such DOF have not
been removed from molecular description, their behavior
can be computed analytically. Thus, the leading order
model implied by Eq. (40) is equivalent to a CG, point-
molecule approximation in terms of only χ.

IV. NUMERICAL RESULTS AND THE ROLE
OF SYMMETRY IN COARSE-GRAINING

One our main results is the observation that higher-
order multipole corrections yield orientation-dependent
potentials, forces, and torques. Thus, the coordinate re-
duction achieved by keeping only the leading-order be-
havior imposes significant (i.e. radial) symmetry that
may not be physically reasonable. By means of numerical
experiments and asymptotic estimates, we highlight the
importance of this structure on the accuracy of a RO or
CG representation. Our exposition has two main parts.

First, we show that the orientation dependence of the
force-field can be significant, even for well separated par-
ticles. Computing averages over different sets of argu-
ments, we illustrate that projecting this structure onto a
radially symmetric potential yields unexpected behavior
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not captured by the leading-order multipole potential.
Second, we present two-body collisions between idealized
molecules with varying degrees of symmetry. These ex-
amples demonstrate the critical role played by angular
momentum and show how imposing symmetry on a CG
model yields inconsistent trajectory level dynamics.

A. Symmetry and convergence of the multipole
expansion

Ostensibly Eq. (11) is a function of the center of mass
vectors χj , χj′ and orientation variables Θj , Θj′ . But
in MD, the most popular class of atomistic potentials are
central, i.e., they depend only on the magnitude of the
interparticle separation vector

u = u
(
|χj − χj′ + Θjδk −Θj′δk′ |

)
. (41)

Without loss of generality, we can factor out one of the
rotation matrices to find

χj − χj′ + Θjδk −Θj′δk′ = Θj′

[
χ̃+ Θ̃δk − δk′

]
,

(42)

where χ̃ = ΘT
j′(χj − χj′) and Θ̃ = ΘT

j′Θj . Because the
magnitude of the separation vector in Eq. (42) is inde-
pendent of an overall rotation, we immediately recognize
that χ̃ and Θ̃ can be treated as the only independent
quantities in u. It follows that central intermolecular po-
tentials and forces exhibit the symmetries

U(χj ,Θj ,χj′ ,Θj′) = Ũ(χ̃, Θ̃) (43)

F(χj ,Θj ,χj′ ,Θj′) = ΘjF̃(χ̃, Θ̃) (44)

where F̃ is defined with respect to the gradient of the
potential. Thus, it is sufficient to consider intermolecular
potentials and forces as functions defined on R3×SO(3),
i.e. a position and orientation.

We introduce an interpretation of these variables that
is convenient for this discussion. Identifing the lab-frame
with the body-frame of molecule j, the separation vector
χ̃ can be described in spherical coordinates in terms of a
radius (distance), longitude, and lattitude. The remain-
ing orientation degrees of freedom are then associated
with pitch, yaw, and roll of molecule j′, which “orbits”
the central molecule. From this vantage point, there are
at least two ways to derive a spherically symmetric CG
potential (or force-field) from u: either (i) ignore the five
rotational degrees of freedom altogether, which amounts
to setting δk = 0 and keeping only the zeroth order mul-
tipole term; or (ii) average over the rotation degrees of
freedom.

To better understand the differences between these ap-
proximations, we consider a Lennard-Jones 6-12 inter-
atomic potential of the form,

u(r) = 4ε

((σ
r

)12
−
(σ
r

)6)
. (45)

We report results in the non-dimensional, Lennard-Jones
units. Computationally this amounts to setting ε and
σ both equal to one. Note that in this case, the po-
tential minimum for atom-atom interactions occurs at
rmin = 21/6 ≈ 1.122. This is a natural length scale for
consideration of atom-atom interactions.

We consider an idealized system composed of trian-
gular rigid bodies with identical atomic interaction sites
located at the vertices; thus P = 3. We assume the
molecules are isosceles and have different masses at each
vertex, so that the center-of-mass does not necessarily co-
incide with the centroid. In the body-frame, the vertices
are located at

δ1 = ab(1, 0, 0)T (46a)

δ2 = b(−0.5,
√

3/2, 0)T (46b)

δ3 = b(−0.5,−
√

3/2, 0)T (46c)

where a determines the relative length of the two equal
sides to the remaining side of the triangle, and b is an
overall scale factor determining the size of the molecule.
Note that as b → 0, the molecule reverts to a point-
particle. For Lennard-Jones molecular systems the com-
bination of b and σ determines a distance beyond which
one can expect that the multipole approximation will be
effective, c.f. (29). For the following examples, we set
b = 0.2 and a = 4.

We first note that variation with respect to orientation
can be significant. As an example we place a “target
molecule” at the origin of the lab-frame with an arbi-
trary but fixed orientation.5 The location of the source
molecule is fixed at χ2 = (0, 0, 3). We consider the force
on the target molecule as function of Θ2.

Due to molecular asymmetry, the magnitude of this
force varies considerably even at this moderately large
separation distance. To illustrate this, in figure 1 we
show the distribution of ‖F‖ = ‖F1,2‖ for 10000 orien-
tations Θ2 drawn at random from the uniform distri-
bution on SO(3). The distribution in ‖F1,2‖ is highly
asymmetric and the range is approximately twice the
average. For comparison, the distributions are shown
when evaluating these same forces using multipole ap-
proximations up to order 2. Notice that the zeroth or-
der expansion collapses molecules to points with centrally
symmetric interactions. When considered as a function
of rotations, the random distribution appears as a delta-
function. Clearly this represents a significant structural

5 For the examples discussed in this section we fixed this orien-
tation to be Θ1 = Euler(8/11, 16/7, 3), where Euler(φ, θ, χ) is
the Euler rotation matrix defined using the zxz-convention [43].
This choice is arbitrary. The intent is to break symmetries that
arise when molecular axes are aligned. Alternatively we could
have set Θ1 equal to the identity and fixed the location of the
source molecule to be an arbitrary point on a sphere of radius
r = 3.
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FIG. 1. Probabilities of a given force for a collection of random orientations. Upper left: For fixed intermolecular separation,
the distribution of ‖F‖ as a function of orientation is shown. Upper right: The zeroth order multipole expansion is spherically
symmetric and cannot capture this variation. Thus the distribution collapses to a delta-function. Lower left and right: Higher
order multipole expansions converge to the all-atom result.

collapse in comparison to the all-atom computation. In-
terestingly, including first-order multipole expansions re-
sults in an approximately uniform distribution over the
same range as the all-atom computation. Finally, the
shape of the all-atom force distribution is effectively re-
covered once second-order terms are included.

As a second example, we average the force over all ori-
entations (i.e. pitch, yaw, and roll) of the source molecule,
j′. This entails computing integrals of the form

〈F〉SO(3)(r, x̂) =
1

8π2

∫
SO(3)

F̃(r, x̂,Θ) dΩ(Θ) (47)

where r is the radial separation between target and source
centers of mass, and x̂ is the corresponding unit vec-
tor. Note that Eq. (47) amounts to determining the in-
teraction between a point-particle and a molecule. We
approximate the integral by numerical quadrature [45].
Figure 2 shows the magnitude of 〈F〉SO(3) for the trian-

gular molecules as a function of longitude and lattitude.
Even after averaging over all orientiations, the force mag-
nitude is a non-trivial function of spherical position. As
the zero-th order multipole expansion is a constant on
this sphere, it acts only as a shift of this variation. Higher
order expansions serve to capture the details more com-
pletely.

Finally, we examine the convergence of the multi-
pole represenation as a function of separation distance
r. Mathematically we average over all rotational degrees
of freedom, orientation and positional, by evaluating the
following integral

〈‖F‖〉(r) =
1

4π

∫
S2

‖〈F〉SO(3)(r, x̂)‖dS(x̂). (48)

Interestingly, the all-atom forces display a structure that
is not visually reminiscent of the Lennard-Jones potential
as averaging over the different interaction lengths has
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FIG. 2. Force averaged over orientation shown as a function of position. Upper left: For fixed intermolecular separation distance
r = 3, ‖〈F〉SO(3)‖ is shown as a function on the sphere parameterized by 3x̂, where x̂ is a unit vector between the target and
source molecule centers of mass. Upper right, lower left, lower right: The multipole evalution converges to the all atom case
for increasing order.

the effect of elliminating the clear potential minimum of
the single atom-atom potential. In contrast, the zeroth-
order approximation does arise from a single Lennard-
Jones potential, and thereby has relative errors on the
order of 20 % or more all the way to r = 4. Higher
order approximations capture more of the structure of
the all-atom potential, as illustrated in the left subplot
of the figure. We further discuss the implications of these
averaging procedures in Sec. V.

B. Symmetry and Dynamics: Two-Body Collisions

To illustrate the effects of the multipole approxima-
tions on dynamics we perform rigid-body simulations of
colliding molecules. For convenience, we set m1 = m/a,

m2 = m3 = m (where m is a mass scale) so that the
center of mass is at r = 0 in the body-frame of reference.
To advance time, we implement the symplectic algorithm
described in Ref. [42], which facilitates evolution of the
rotation matrices.

We first consider the case of two-particle dynamics of
molecules whose centers-of-mass are on a collision course.
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FIG. 3. Force as a function of distance computed by aver-
aging all angular degrees of freedom via Eq. (48). Of note,
the all-atom average intermolecular potential bears little re-
semblance to the Lennard-Jones potential associated with the
zeroth-order multipole approximation. The structure of the
all-atom force only begins to be captured by higher-order ap-
proximations.

We prescribe initial conditions as follows:

χ1 = (−5, 0,−0.25)T (49a)

χ2 = (5, 0, 0.25)T (49b)

χ̇1 = (v1, 0, 0)T (49c)

χ̇2 = (−v1, 0, 0)T (49d)

ω1 = ω2 = 0 (49e)

Θ1 = Θ2 = Ry(π/2)Rx(π/4) (49f)

a = 4, b = 0.1 (49g)

m = 0.1 (49h)

where v1 > 0 is an adjustable parameter, R?(φ) is a
rotation about the lab-frame ?-axis by an angle φ, and
a and b are as defined in Eqs. (46a)–(46c). We also set
the interatomic potential u(r) = 300r−2 to be a simple
power law repulsion.

FIG. 4. Energy conservation as a function of timestep for a
two-particle collision using an exact intermolecular potential
according to Eq. (26) with u(r) = 300r−2. Top: Total en-
ergy as a function of time. Closest approach of the molecules
occurs at the maximum value of energy. Bottom: Maximum
energy deviation δE = maxt |E(t) − E(0)| as a function of
time-step dt (blue ×). Note that decreasing the timestep by
a decade increases energy conservation by two decades, which
is consistent with the a second order numerical integrator.
The solid line is the function δE = 15000(dt2).

As a preliminary assessment of our discretization of the
equations-of-motion, we check that energy s conserved to
within the time increment O(dt2) as required by the sym-
plectic timestepper. Figure 4 illustrates this conservation
for v1 = 35 and b = 0.2 using the exact potential at a va-
riety of timestep increments (cf. Fig. 5 for a characteristic
trajectory). Quadratic decay of the energy fluctuations
is consistent with known results on shadow Hamiltoni-
ans and energy conservation for microcanonical molecu-
lar dynamics simulations.

Next, we fix dt = 10−4 while varying b (the molecular
length-scale) over two decades, from b = 1 to b = 10−2.
Note in particular that as b → 0, the molecules revert
to point-particles so that the far-field approximation be-
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FIG. 5. Example of predictions associated with an exact intermolecular potential and approximations thereof. The four
subplots show collision between two triangular particles; the solid black line extends from the center-of-mass to the geometric
center. Top left: Trajectory computed using the exact potential. Note that the triangular molecules begin rotating after the
collision. Top right: Trajectory using the zeroth order (radially symmetric) potential. Note that the collision does not induce
any rotation in the molecules. Bottom left: Trajectory using the first order potential. The molecules over-rotate relative to the
top-left sub plot. Bottom right: Trajectory computed using the second order.

comes more accurate. Figure 5 shows a sample of charac-
teristic trajectories. Note that the trajectory computed
using the exact potential that is poorly captured by the
zeroth and first order potentials. To make this observa-
tion more quantitative, we also compute convergence in
scaled Euclidean norm on the phase-space variables

L(n) =
∑
j,k

||x(e)
j,k − x

(n)
j,k ||2

d2?
+
||p(e)

j,k − p
(n)
j,k ||2

p2?
(50)

where the superscripts (e) and (n) refer to the trajec-
tory computing using the exact potential and nth order
approximation, xj,k is the position of the kth atom in
the jth molecule, pj,k is the corresponding momentum,

and the normalization factors p2∗ and d2∗ are characteristic

scales chosen to adimensionalize the measure. 6 Figure 6
shows representative examples of these norms as a func-
tion of time for the exact and approximate potentials. As
expected, the trajectories computed using approximate
potentials converge to their fully atomistic counterparts
when b → 0 or when the approximation order increases.
Figure 7 shows the corresponding rotational energies as
a function of time.

To further understand the impact of low-order ap-
proximations, Fig. 8 shows a top-down view trajecto-
ries in which the molecular orientation induces signifi-

6 As an aside, using multipoles up to second order it is possible
to express this phase-space norm in terms of χ and Θ and their
time derivatives.
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FIG. 6. Top: Phase-space norms according to Eq. (50) be-
tween trajectories computed using the exact and zeroth order
approximation to the intermolecular potential. Note that as
the characteristic molecular size goes to zero, the two trajec-
tories increasingly coincide. Bottom: The same norms com-
puted for fixed b = 0.1 using successively higher-order approx-
imations of the molecular potential. Increasing the approx-
imation order yields better agreement between the coarse-
grained and atomistic trajectory.

cant out-of-plane motion after the collision. In particu-
lar, we consider the case in which Θ1 = Rz(π/4) and
Θ2 = Rz(5π/4), so that both triangles lie in the same
plane. Note that the exact and second-order potentials
predict deflection in the x-direction after the collision,
while the zeroth-order potential does not. Importantly,
this discrepancy would hold for any spherically symmet-
ric potential, as can be shown by recourse to symmetry
arguments. Thus, there is no spherically symmetric po-
tential that predicts the correct trajectory to within an
arbitrary level of accuracy for a fixed molecular size and
minimum separation. A more general statement to this
effect is presented in Sec. V.

FIG. 7. Rotational energy using the exact and approximate
potentials shown in the bottom plot of Fig. 6 (but with b =
0.2).

V. DISCUSSION AND CONCLUSIONS

A. Comparison with other coarse-graining methods

Several popular coarse-graining strategies determine
intermolecular interactions via potentials of mean force.
In short, such approaches specify a mapping from atomic
coordinates r onto a user-defined set of CG coordinates
R, P(r) = R. The corresponding potential VCG(R) is
defined as the Boltzmann factor satisfying the relation

e−VCG(R)/kBT =
1

Z

∫
dr e−V (r)/kBT δ (R− P(r)) , (51)

where Z is the partition function, V (r) is the atom-
istic potential, and the Dirac delta function δ (R− P(r))
serves to restrict the atomic coordinates to configurations
consistent with CG variables R.

Formally, Eq. (51) has the benefit of yielding the ex-
act statistics associated with the CG system. However,
the corresponding CG potential depends strongly on the
choice of mapping P(r); there is no a priori rule for its
construction. Noid and collaborators have worked out
the case in which CG variables are linear averages over
collections of atoms, i.e., P(r) may be represented by a
matrix in which the sum over each row is one [9]. How-
ever in general, coarse-graining strategies based on Eq.
(51) must also posit a trial function representation of VCG

with parameters that can be fit via optimization against
an atomistic simulation. In many cases, objective func-
tions are based on the relative entropy of the approxi-
mate and true potentials of mean force, or in some cases,
appropriate norms of CG observables.

An interesting feature of this approach is that phase
spaces of the atomistic and CG representations are neces-
sarily different, since P entails a coordinate reduction. As
a result, observables that depend on all of the atomistic



13

FIG. 8. Top-down view of collision using various approximations to the exact intermolecular potential. Left: Comparison of
trajectory using the exact potential and corrections to the zeroth order potential. All trajectories follow the same path up to
the point of collision and diverge from the atomistic according to their approximation order. The initial conditions are such
that the trajectories of the bottom molecule are the same as for the top molecule when rotated by π radians. Note that in
all cases, the collision induces rotation and deflection into the x-direction. Right: Trajectory computed using the zeroth-order
approximate potential. Note the lack of deflection in the x-direction.

coordinates (e.g. the system energy, pressure, tempera-
ture, etc.) are not meaningfully defined in terms of the
CG simulations. Practically speaking, this means that
naive use of the atomistic definitions yields nonsensical
results. However, corresponding CG definitions of such
observables can be determined a posteriori in terms of P
via sampling exercises similar to those used to determine
VCG. The recognition that this sampling is computa-
tionally expensive has been termed the “representability”
problem, and the task of finding efficient and/or analyt-
ical methods of determining the CG observables remains
an open problem [21, 46].78

While the generalized multipole expansions are more
limited in their ability to reduce the complexity of a
model, by construction they do not change the measure-
space of the reduced-order model. This is because

7 Taking the logarithm of Eq. (51) also reveals that VCG may have
non-trivial temperature dependence. This is often called the
“transferability” problem, since it means that VCG may need to
be determined through sampling at each state-point of interest.

8 The representability problem has also been understood as an
inability to reproduce all atomistic predictions using CG simu-
lations. Reference 21 reconciles this definition with the one we
give.

“coarse-graining” occurs through coordinate decoupling;
i.e. the degenerate, spherically symmetric potentials al-
low the angular DOF to evolve independently in a way
that can be computed by hand. While the implications of
this observation lie beyond the scope of this manuscript,
we recognize, for example, that this amounts to replacing
Eq. (51) with

eVCG(X) ∝
∫

dΠ eV1(X)+V2(Π) ∝ eV1(X) (52)

where X and Π refer to the collection of generalized po-
sition and momentum variables, and their separability is
the manifestation of the coordinate decoupling. The ex-
tent to which such approximations induce errors in CG
predictions remains an open problem. See also Ref. 26 for
a related approach that considers the concept of coarse-
graining in interaction space.

B. Implications for uncertainty quantification of
coarse-graining

For many-body systems, we speculate that it is pos-
sible to construct formal, a priori uncertainty quantifi-
cation estimates associated with a given multipole ap-
proximation. That is, assuming that the probability
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of any given rigid-body microstate is given by P ∝
exp(−H/kBT ) (where H is the Hamiltonian), the dif-
ference in an exact and CG observable G can be written
as

〈G〉E − 〈G〉A =

∫
dXdΠ G(X,Π) [PE − PA] , (53)

where the E and A subscripts refer to probabilities as-
sociated with the exact and approximate Hamiltonians,
and X and Π have the same meanings as before. Be-
cause we have given analytical expressions for the exact
and approximate potentials, one can write

HE = HA +O
[(

δ

χmin

)n]
, (54)

where the power n corresponds to the first omitted term
in the multipole approximation. Here χmin is likely a
characteristic minimum separation between molecules,
which we speculate can be estimated on the basis of ana-
lytical, asymptotic expressions for the radial distribution
function (RDF) given by Widom [47]. Given this, it may
be possible to expand the difference PE − PA in powers
of δ/χmin and thereby compute estimates of the associ-
ated error in the observables. More detailed statements
to this effect are open questions that we aim to address
in future work.

C. Extensions to inhomogeneous and non-rigid
systems

Generalizations to multi-component systems are
straightforward. In more detail, the aforementioned
derivations only assume a mono-component system in-
sofar as the δk are taken to be the same within each
molecule. Relaxing this restriction leads to different in-
ertia and geometric moment-tensors for the molecules.
Thus, the tensors specific to each molecule in an interac-
tion would appear in each term of the multipole expan-
sion, with the only other modifications coming from the
precise form of the atomistic interaction potential. Such
details will be addressed in a manuscript under prepara-
tion.

We also anticipate that our approach can be modi-
fied to address non-rigid systems. In such cases, a new
length-scale will emerge, associated with the fluctuations
in bond distances. It is likely that such effects are com-
parable to second-order multipole approximations. Fur-
thermore, we speculate that molecular vibrations can be
treated independently in terms of the eigenmodes of the
molecule. In such cases, it may be possible to omit cer-
tain modes by introducing their average energy into the
Hamiltonian.

D. Computational efficiency

Computationally, low-order multipole computations
are more efficient than all-atom calculations. However

we have not explored in detail the relative efficiency of
the potential interactions. The direct atomistic approach
requires O(P 2) summations per molecule whereas the
multipole expansion captures this geometric distribution
once, and replaces the pairwise interactions with tensor
contractions. Symmetry inherent in these tensors can
be exploited to reduce storage memory requirements, al-
though analysis of these issues is beyond the scope of this
work. Nonetheless, we report on preliminary computa-
tional observations.

All of the simulation steps are written in Matlab [48].9

The potential, force, and torque for each fixed pair in-
teraction are computed using a vectorized code for both
the all-atom and multipole potentials. Thus, there is
no significant looping penalty inherent in the all-atom
computation, which effectively does the P 2 atom-atom
computations simultaneously. On a 16-core machine, we
find that 106 force computations using random positions
and orientations take roughly 73 seconds for the all-atom
computation, 16 seconds for zeroth order, 27 seconds for
first order, and 70 seconds for second order. Thus, it
appears that within our own code there is a break-even
point in terms of computational time around the second-
order approximation. We stress, however, that these re-
sults are preliminary and do not reflect any attempts to
optimize the computations.

Provided that computational gains are limited to first
or at most second-order potentials, our generalized multi-
pole method may still be useful in a manner analogous to
fast-multipole methods, where approximations are only
made for well-separated particles. In this case, it may be
fruitful to construct a hybrid potential that uses the ex-
act potential for nearest neighbors and a low-order mul-
tipole potential for well separated molecules. It is also
important to note that when low-order potentials con-
tain long-range effects that decay as 1/r, periodic bound-
ary conditions may require the use of lattice summation
methods, e.g. in the spirit of Ewald summation [49]. Such
approaches may diminish the computational gains asso-
ciated with coarse-graining, although a detailed study of
such issues is beyond our scope.

E. Conclusions, Limitations, and Open Directions

One of the most compelling aspects of coarse-graining
is the promise of being able to choose the length-scale
associated with the elements of a model. Our work high-
lights a fundamental question that arises in this context:
in so choosing the scale, how does one control the accu-
racy of a CG model?

9 Certain commercial products are identified in this work in order
to specify the computational procedure adequately. Such identi-
fication is not intended to imply recommendation or endorsement
by the National Institute of Standards and Technology, nor is it
intended to imply that the materials or equipment identified are
necessarily the best available for the purpose.
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As we have shown, it is critical to address this ques-
tion as an integral part of the coarse-graining task. Oth-
erwise, one risks eliminating relevant physics, or equally
problematic, introducing unwanted physics. That being
said, there is a natural tension between coarse-graining
and accuracy. The latter necessarily entails constraints
on the model reduction process, since certain CG repre-
sentations cannot be reasonable for all problems at all
scales. In the context of our multipole approach, this
manifests as a restriction that the CG particles corre-
spond (at least approximately) to rigid bodies. As a re-
sult, our method can likely only reduce the number of
degrees of freedom by at most a factor of ten or so, since
large molecules containing, e.g. a few carbon atoms, tend
to exhibit significant bond rotation and related motion.

More generally, our work points to the following open
questions: (I) when and how can physical processes
be coarse-grained and still yield a reduced-order model
whose accuracy is both reasonable and quantifiable a pri-
ori; (II) provided this task is possible, under what condi-
tions do all physical observables or only a subset thereof
remain accurate; and (III) to what extent can (I) and
(II) be addressed analytically for a reasonable class of
practical systems?

Many of the past works cited herein provide empirical
evidence that there is an optimistic resolution to ques-
tion (I), but to the best of our knowledge, there is little,
if any analytical understanding. Question (II) is more
disconcerting in that most CG strategies are known to
correctly predict only a few physical quantities. We spec-
ulate that only those physical properties that do not de-
pend on the omitted or introduced physics can be cor-
rectly predicted, save perhaps the use of recalibration
steps, which introduce their own uncertainties. Question
(III) is perhaps the most difficult, given the complexity
of modeling many-body systems in the first place. Here
again, we speculate that a deeper understanding of how

to analytically treat highly correlated systems may be
necessary if progress is to be made.

In this light, our multipole coarse-graining approach is
designed to provide a prototypical strategy for addressing
all three questions. Specifically, forces associated with
the internal structure of a molecule only matter at close
range and can be coarse-grained to varying degrees de-
pending on how well far-field conditions hold. Provided
this is done self-consistently (in the sense of perturba-
tion theory), all CG observables should have controllable
accuracy relative to the atomistic predictions. What is
most useful, however, is how the coarse-graining is actu-
ally achieved: in constrast to methods that modify the
molecular structure, we alter the interaction potential.
Importantly, these two approaches are not equivalent,
since changing structure alters both the free-body mo-
tion and interactions in a discontinuous way. In con-
trast, the multipole approach views coarse-graining as a
task decoupling various degrees of freedom (e.g. orien-
tational from translational) in such a way that accuracy
can be progressively dialed in. Ultimately we believe that
further development of such techniques will be necessary
for a complete understanding of the true capabilities and
limitations of coarse-graining.

Acknowledgements: The authors thank Yuri Mishin for
helpful feedback during preparation of this manuscript.
This work is a contribution of the National Institute of
Standards and Technology and is not subject to copyright
in the United States.

Appendix A: Derivation of torque

We derive equation (18) expressing the torque on the
jth molecule in terms of the gradient with respect to Θj .
First, given an arbitrary function u(χ + Θδ), applying
the definition of this gradient given by equation (19), by
the chain-rule one finds that

∇Θu(χ+ Θδ) =

ux(χ+ Θδ)δx ux(χ+ Θδ)δy ux(χ+ Θδ)δz
uy(χ+ Θδ)δx uy(χ+ Θδ)δy uy(χ+ Θδ)δz
uz(χ+ Θδ)δx uz(χ+ Θδ)δy uz(χ+ Θδ)δz

 = ∇χu(χ+ Θδ)δT .

Here ux(χ+Θδ) is shorthand for evaluation of the partial
derivative of ∂u/∂x at the point χ + Θδ, and similarly
for uy and uz.

Next we define the potential field resulting from all
atoms on all molecules other than the jth and re-write the

sums in equations (16) and (11) in terms of this function

Ũ(r) =
∑
j′ 6=j

∑
k′

u(r− xk′)

Uj(χ,Θ) =
∑
k

Ũj(χ+ Θδk)
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Finally, recalling the identity (15) we have

−rot
(
∇ΘUj ·ΘT

)
=
∑
k

rot
(
−∇ΘŨ

(
χ+ Θδk

)
·ΘT

)
=
∑
k

rot
(
Fk · dT

k

)
=
∑
k

dk × Fk

= T.
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